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A generalized hybrid orbital (GHO) method has been developed at the semiempirical level in combined
quantum mechanical and molecular mechanical (QM/MM) calculations. In this method, a set of hybrid orbitals
is placed on the boundary atom between the QM and MM fragments, and one of the hybrid orbitals participates
in the SCF calculation for the atoms in the QM region. The GHO method provides a well-defined potential
energy surface for a hybrid QM/MM system and is a significant improvement over the “link-atom” approach
by saturating the QM valencies with hydrogen atoms. The method has been tested on small molecules and
yields reasonable structural, energetic, and electronic results in comparison with the results of the corresponding
QM and MM approximations. The GHO method will greatly increase the applicability of combined QM/
MM methods to systems comprising large molecules, such as proteins.

I. Introduction

Combined quantum mechanical and molecular mechanical
(QM/MM) methods offer a powerful tool for the study of
chemical reactions in solutions and in enzymes.1 In this
approach, a large molecular system is partitioned into a QM
and an MM region. The QM region typically consists of the
reactant molecule and participating amino acids, whereas the
rest of the protein-solvent system is included in the MM
region.2-5 Consequently, bond-forming and -breaking processes
can be modeled by quantum chemical methods in the presence
of the explicit protein-solvent environment. For solution-phase
systems, the QM and MM boundary division is straightforward
since there are no covalent bonds connecting the solute and
solvent molecules. For biopolymers, however, the QM/MM
separation typically occurs within a large molecule, where one
or more covalent bonds must be divided between the two
regions. In this case, it is far less evident that the molecular
fragments in both the QM and MM regions can be adequately
treated. As a result, the QM/MM boundary division presents a
major drawback for applications of combined QM/MMmethods
in biomolecular systems.
A number of approaches have been proposed to circumvent

this problem. A simple solution is to saturate the valencies of
the QM fragment with hydrogen atoms (“link atoms”).2,3,6 The
link “atom” may also be methyl groups or pseudo-halogen
atoms, which can be parametrized to mimic the properties of
the neighboring MM fragment. The link-atom method has been
widely used in combined QM/MM studies of proteins.7 How-
ever, the method lacks a unique definition of the total energy
for the hybrid QM/MM system since arbitrary corrections must
be made to remove the effect of the added link atoms.8 For
example, Coulombic interactions between a link atom and MM
atoms are excluded from the QM Hamiltonian in most imple-
mentations.2,3,8 However, this results in arbitrary charge
polarization in the QM system and unrealistically large partial
charges on the hydrogen link atom. Furthermore, recent studies

indicate that QM/MM results strongly depend on the placement
of the link atom and on the number of MM atoms excluded
from the classical electrostatic field that interacts with the QM
region.6

The second approach, which is more appealing, is the local
self-consistent field (LSCF) algorithm developed by Rivail and
co-workers.9 In the LSCF method, the bonds between the QM
and MM fragments are represented by strictly localized bond
orbitals, which are obtained by separate quantum mechanical
calculations of small model compounds. These localized bond
orbitals are assumed to be transferable for use in proteins and
are kept constant throughout the SCF calculation. Several
studies indicate that the LSCF method can yield good results
in energy minimization of reaction pathways in proteins, and
the assumption of transferability of bond orbitals appears to be
valid.9 An elegant feature in the LSCF method is that it does
not require the addition of link atoms into the system, although
the parameters for the localized bond orbitals have to be
determined from model studies for each new system in the LSCF
treatment.
Finally, a double-iteration scheme has been used by Moro-

kuma and co-workers and by Bersuker et al.10 Here, the
geometry of the QM fragment, which is saturated with link
atoms as discussed above, is first optimized. Then, the MM
fragment is optimized using molecular mechanics in the presence
of the fixed QM fragment that was obtained in the previous
step. The process continues until the energy of the entire system
is converged. In the implementation by Morokuma and co-
workers, Coulombic interactions between the QM and MM
region are ignored without allowing for any polarization of the
QM region.10a On the other hand, Bersuker et al. introduced
an additional, intermediate QM fragment encompassing the first
QM fragment to smooth out the transition from the QM to MM
region.10b

In this article, we describe a generalized hybrid orbital (GHO)
method for the treatment of QM/MM covalent bonds. In this
method, we make use of hybrid atomic orbitals, analogous to
Rivail’s LSCF orbitals, as basis functions on the boundary atoms
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of the MM fragment. These hybrid orbitals are divided into
auxiliary and active orbitals, the latter of which are optimized
along with all other atomic orbitals of the QM fragment in the
SCF calculations. Consequently, the chemical bond connecting
the QM and MM fragments is explicitly treated without
introducing spurious “link atoms”. Furthermore, in contrast to
the LSCF approach, the GHO method does not need to be
reparametrized every time when a new system is studied. In
what follows, the theoretical background of the generalized
hybrid orbital method will be presented along with computa-
tional details. The method is tested on some hydrocarbon model
systems.

II. Method

We consider a molecular system partitioned into two frag-
ments: one treated quantum mechanically and the other
represented classically by an MM force field. The covalent
bond connecting the QM and MM fragments is assumed to be
a σ bond, with two boundary atoms denoted by Q and B. In
particular, for applications to large organic molecules and
biopolymers, the MM boundary atom B will most likely be
chosen as an sp3 carbon, which is also connected to three other
MM atoms (groups), X, Y, and Z (Figure 1).
In this article, we limit our discussion to semiempirical

methods, although extension to ab initio calculations can easily
be made and will be presented in a later publication. The
boundary atom has the standard valence s and p basis functions
as all the other non-hydrogen atoms in the QM fragment. These
four sp atomic orbitals are transformed into a set of orthogonal
hybrid orbitals,{ηB, ηX, ηY, ηZ}, which can be defined by the
local geometry of the boundary atom.11 These hybrid orbitals
will be used along with theN atomic orbitals{øµ, µ ) 1, ...,
N} in the QM region to determine the QM energy. However,
only one of the hybrid orbitals,ηB, which lies along the Q-B
bond will be optimized. Therefore,ηB and{øµ} are the active
orbitals in SCF calculations, whereas{ηX, ηY, andηZ} act as a
set of auxiliary orbitals, generating, along with the nucleus
charge, an effective core potential (ECP) for the boundary atom.
The valency of the QM fragment is fully satisfied by introducing
the active hybrid orbital along with one “active electron” from
the boundary atom. The ECP can be optimized by modifying
the original semiempirical parameters for the boundary atom
through examination of the bonding properties of the active
hybrid orbital.
The use of mixed hybrid and atomic orbitals in combined

QM/MM computations was initially described by Warshel and
Levitt2 and has been extensively explored by Rivail and co-
workers.9 Warshel and Levitt proposed the use of a single
hybrid orbital for the MM boundary atom in SCF calculations,
although the method was not developed further since the

Warshel group has instead focused on the use of an empirical
valence bond method.1c,2 In Rivail’s approach, three active
orbitals on the QM “frontier” atom are included in the SCF
optimization, while the density of the hybrid orbital in the
direction to the MM frontier atom is kept frozen.9 In the spirit
of Rivail’s approach, we have generalized the hybrid orbital
method by recognizing the fact that the auxiliary orbitals may
be used to mimic the effective core potential for the active
electrons of the MM boundary atom. Rather than parametrizing
the charge density of hybrid orbitals for each specific system,
we have decided to optimize the semiempirical parameters for
the boundary atom to reproduce bonding properties of full QM
systems. As a result, the parameters in our generalized hybrid
orbital (GHO) method are expected to be general and transfer-
able in the same way as all the semiempirical parameters.
The Hartree-Fock wave function,Ψ, for the QM subsystem

is written as a single Slater determinant ofM doubly occupied
molecular orbitals (MO){φi

H}, which are linear combinations
of theN atomic orbitals{øµ} plus one hybrid orbitalηB from
the boundary atom:

where the superscript H is to emphasize the fact that the MO is
constructed from a hybrid orbital basis set. In the neglect of
diatomic differential overlap (NDDO) approximation that is
made in the semiempirical MNDO, AM1, and PM3 models,12-15

the MO coefficients must satisfy the orthonormal constraints:

Note that the constraint conditions are independent of the overlap
matrix. Consequently, the auxiliary hybrid orbitals{ηX, ηY,
ηZ) are also orthogonal to the molecular orbitals{φi

H}.
If the density matrix for the QM subsystem isPH, which has

dimensions of (N+ 1)× (N+ 1), the total energy of the hybrid
QM/MM system can be written as follows:

In eq 3, Hµν
eff is an element of the “effective” one-electron

matrix, Enuc
QM andEnuc

QM/MM are the nuclear Coulombic energies
for the QM region and between QM and MM atoms,Eaux is
the interaction energy involving the auxiliary orbitals, andEMM
is the molecular mechanics energy for the MM region. The
element of the “effective” one-electron matrix,Hµν

eff, is given in
eq 4:

whereb specifies the boundary auxiliary orbitals,Hµν
H is the

“standard” one-electron matrix element for the QM subsystem,
Iµν
H is the QM/MM one-electron integral due to all classical
partial charges in the MM region,1 and Pbb

H is the charge
density for the auxiliary hybrid orbitals (see below). TheEaux
term in eq 3 includes electron-nucleus attraction and Coulomb-
exchange repulsion interactions associated with the auxiliary

Figure 1. Schematic representation of the division of a QM-MM bond
and partition of the hybrid orbitals on the MM boundary atom B.

φi
H ) ∑

µ

N

cµiøµ + cBiηB (1)

Λij ) ∑
µ

N

cµicµj + cBicBj - δij (2)

E) ∑
µν

N+1

Pµν
H Hµν

eff + 1/2∑
µν

N+1

∑
λσ

N+1

Pµν
H Pλσ

H [(µν,λσ) - 1/2(µσ,λν)] +

Enuc
QM + Enuc

QM/MM + Eaux+ EMM (3)

Hµν
eff ) Hµν

H + Iµν
H + 1/2∑

b

3

Pbb
H [(µν,bb) - 1/2(µb,bν)] (4)

Treatment of Boundary Atoms J. Phys. Chem. A, Vol. 102, No. 24, 19984715



orbitals, and it is defined by eq 5:

whereHbb
H andIbb

H are the electron-nucleus attraction integrals
of the auxiliary orbitals for the QM and MM nucleus charges,
respectively. Note that the second sum in eq 5 is constant for
a given set ofPbb

H at a fixed geometry.
The electronic integrals in eqs 3-5 are expressed in terms

of the mixed hybrid and atomic orbitals, which require ap-
propriate integral transformations. Alternatively, the density
matrices for the active and auxiliary orbitals can be combined
by adding the auxiliary orbital densityPbb

H at the corresponding
diagonal positions, resulting in a total density matrixPt

H in the
generalized hybrid orbital basis set. Note thatPt

H has dimen-
sions of (N + 4) × (N + 4). If Pt

H is transformed into a
density matrix in the atomic orbital basis,Pt

AO, eq 3 can be
simplified to the standard Hartree-Fock energy expression:

In eq 6, all electron integrals are expressed in terms of the atomic
orbitals.

III. Computational Details

The performance of the GHO method is examined using the
semiempirical AM1 model and the CHARMM-24 force field
for the model compounds ethane, propane, and butane.14,16 In
this section, we summarize the parameters and rules developed
for our GHO method.
It is clear from eqs 4 and 5 that the present GHO method

requires a knowledge of the density matrix elementsPbb
H for

the auxiliary hybrid orbitals, which are kept constant in the SCF
calculation. The primary criterion for a proper value ofPbb

H is
that it should reflect the bond polarity between the boundary
atom B and the MM atoms. In the spirit of Mulliken population
analysis,17 Pbb

H is defined by eq 7:

whereqB is the atomic partial charge of the boundary atom if
it were treated as an MM atom in the force field. Thus, the
MM partial charge qB on the boundary atom is equally
distributed to the three auxiliary orbitals. It is interesting to
note that, in molecular mechanical force fields such as
CHARMM, the CHn unit is typically treated as a neutral charge
group.16 The definition of eq 7 ensures such a charge neutrality
by transfering the MM partial charge on the boundary atom to
its auxiliary orbitals.
To define the QM and MM region, an important criterion is

that charge separation between the QM and MM fragment
should be minimal and should not extend farther beyond the
boundary atom. Consequently, the small amount of charge
transfer between the two fragments can be adequately repre-
sented by the charge polarization of the active hybrid orbital
on the boundary atom. If this criterion cannot be satisfied, the
size of the QM fragment should be increased.
Since the auxiliary orbitals are excluded from the orbital

optimization, standard semiempirical parameters must be modi-

fied to reflect the characteristics of the effective core potential
for the boundary atom. The semiempirical parametersâs and
âp describe chemical bonding features, while theUss andUpp

values reflect the relative electronegativity of the atom. Con-
sequently, these parameters may be adjusted to yield the desired
geometry and partial charges associated with the boundary
atoms. This has been accomplished by examining the model
compound propane, for which one methyl group is treated as
the QM fragment with the boundary atom at the C2 position,
and the remaining atoms are grouped into the MM region. The
âs and âp parameters are adjusted such that the optimized
C1(Q)-C2(B) bond distance is in accord with the AM1 value
when the entire molecule is treated quantum mechanically. In
addition, the bond angles between the active and auxiliary
orbitals on the boundary atom are determined by the hybridiza-
tion of these orbitals, which imposes a second constraint on
the optimization of theâ parameters. Therefore,âs andâp are
uniquely defined by these two geometrical constraints in our
GHO method. We found that for a carbon boundary atom the
standard AM1 parametersâs andâp need to be scaled by factors
of 0.35 and 1.90, respectively. The remaining two parameters,
UssandUpp, are determined by matching the Mulliken popula-
tion charge for the boundary atom C2 and the MM partial charge
(-0.18 e) used in the CHARMM force field. It turns out that
onlyUpp requires adjustment by a scaling factor of 0.977. These
parameters are used in all calculations reported in this article
(Table 1). We anticipate that the same procedure may be used
to obtain boundary ECP parameters for heteroatoms.
Nonbonded van der Waals interactions between QM and MM

atoms are treated classically using the standard force field
convention,16,18whereas QM/MM electrostatic interactions are
determined quantum mechanically by including the partial
charges ofall MM atomsin the QM/MM interaction Hamilto-
nian. This differs from the link-atom approach, in which MM
atoms within one or two bonds of any QM atoms are typically
excluded from the classical electric field, resulting in a highly
distorted electric field at the QM/MM interface.2,3,6,8 The
transition from the QM region to the MM region in the our
GHOmethod is much smoother since no electrostatic terms have
been neglected. For bond stretch, angle bend, and torsional
terms, those involving exclusively QM atoms are removed from
the force field calculation because they are determined quantum
mechanically. Thus, any bonded terms involving at least one
MM atom, which are not included in the QM expression, are
maintained classically.
It perhaps should be emphasized that the boundary atom in

the GHO method is in essence both quantum mechanical and
classical because the connection between the QM fragment and

TABLE 1: Modified Parameters for the Carbon Boundary
Atom in the Combined Semiempirical GHO-AM1/
CHARMM Potential; All Other QM and MM Parameters
for Carbon Taken Directly from the Standard AM1 or
CHARMM Parameter Sets

item AM1 or CHARMM GHO

âs -15.715 783 -5.500 524
âp -7.719 283 -14.666 638
Upp -39.614 239 -38.703 112

MM Bond Stretching Parameters (Å)
R0(CT2-CB2)a 1.530 1.485
R0(CT3-CB2)a 1.528 1.478
R0(CB-HA)a 1.111 1.091

a The subscript B specifies that the carbon atom is a boundary link
atom. CT2 and HA are standard atom types in the CHARMM force
field, whereas CB2 corresponds to the CHARMM CT2 type and CB

indicates any carbon type.
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the boundary atom is determined by the HF-SCF optimization,
whereas its junction with the MM fragment is defined by the
MM force field. The boundary atom serves as a channel,
bridging the QM and MM regions.
Below, we outline an algorithm for the SCF calculation using

the GHO method.
1. Determine the transformation matrixT for the intercon-

version between the atomic orbitals and the set of mixed atomic
and hybrid orbitals,CH ) T-1‚CAO. Calculate the [(N + 1)×
(N + 1)]-dimensional density matrix,PH, using only the active
orbitals in the GHO basis set. In the present study, the hybrid
orbitals on the boundary atom are kept to be sp3 hybridized.
2. ExpandPH by adding the densities for the auxiliary orbitals

to yield Pt
H. Then, transformPt

H into the atomic orbital basis,
Pt
AO ) (T-1)†‚Pt

H‚(T-1). The subscriptt indicates that the
dimension of the matrixes are (N + 4) × (N + 4).
3. Construct the Fock matrixFt

AO in the atomic orbital basis
set withPt

AO.
4. TransformFt

AO, Ft
H ) T†‚Ft

AO‚T.
5. Remove the columns and rows corresponding to the

auxiliary hybrid orbitals to yield the Fock matrix,FH. Diago-
nalizeFH and compute the new density matrixPH.
6. Test convergence. If not satisfied, go to step 2.
Here we point out that the matrix transformations in steps 2

and 4 are particularly simple since theT matrix has nondiagonal
elements only for the boundary atom, which takes a negligible
amount of CPU time. All calculations are carried out using
the program CHARMM, in which the GHO method has been
implemented. Geometry optimizations are performed using the
conjugated gradient and adopted basis Newton-Raphson meth-
ods.18

IV. Results and Discussion

Three model compounds, ethane, propane, and butane, have
been chosen to assess the performance of the GHO method for
the treatment of the division of covalent bonds in combined
QM/MM calculations. In each case, the QM and MM division
is made across a C-C bond with the QM region treated by the
semiempirical AM1 model14 and the MM region represented
by the CHARMM force field.18 The carbon atom directly linked
to the QM fragment is chosen as the boundary atom. Thus,
only three hydrogen atoms in ethane remain in the MM region.
For propane, the GHO boundary atom can be placed at the C2

or C3 position. These two situations provide an assessment of
the QM-B-MM and QM-QM-B bond angle representations in
the GHO method. Three cases exist in butane, corresponding
to the location of the boundary atom at the C2, C3, and C4
positions, which provide a test of the torsional energy in various
QM/MM representations.
The geometries determined using the combined GHO-AM1/

CHARMMmethod are shown in Figures 2-4, along with those
calculated at the HF/6-31G*, AM1, and MM/CHARMM levels.
Of particular interest are comparisons of the QM/MM and AM1
results for the QM part of the molecule and of the QM/MM
geometries for the MM region with that predicted using the
CHARMM force field. For alkanes, the AM1 model underes-
timates the C-C bond lengths by ca. 0.02 Å and overestimates
the C-H distances by about 0.03 Å in comparison with the
HF/6-31G* results. On the other hand, the MM/CHARMM
values are in better accord with the ab initio data for C-C
distances. In the GHO-AM1 model, the QM-MM bond, CQ-
CB, is fully represented quantum mechanically. Thus, the ability
to reproduce the AM1 value for the CQ-CB bond distance is
essential in the present GHOmethod. For the six CQ-CB bonds

present in the test cases (Figures 2-4), we obtained an average
unsigned error of only 0.003 Å in comparison with the
corresponding AM1 data. To illustrate the transferability of
the âs andâp parameters for the boundary atom, Table 2 lists
the CQ-CB bond lengths for a series of organic compounds.
The agreement with the original AM1 values is also good.
Importantly, the trend of bond length variations is clearly
reflected in the GHO-AM1 calculations.
With the introduction of the QM fragment and the boundary

atom, the geometry of the MM fragment may also be affected.
We found that the only significant effect is the bond distance
directly connected between the boundary atom and MM atoms.
Specifically, without modification of the force field parameters,
the CB-CMM distance is elongated from a typical 1.53 Å to
about 1.56 Å in the GHO approach, and the CB-HMM distance
changes from 1.11 to 1.13 Å. These changes are small enough
not to warrant serious concerns, although they can easily be
corrected, as has been done in the present study, by reducing
the corresponding bond stretch parameters,R0(C-C) andR0-
(C-H), by values of about 0.05 and 0.02 Å, respectively (Table
1). With these corrections, the overall unsigned errors from
the combined GHO-AM1/CHARMM method are ca. 0.002 Å
for bond lengths and 0.3° for bond angles.
Another important criterion for the treatment of the QM-MM

covalent bond is that the electronic structure of the full QM
system should be retained in the QM fragment. Several
properties, including the molecular electrostatic potential and
charge density, may be used to illustrate this. Here, however,
the Mulliken population analysis is adopted since it contains
the essential features of charge polarization in a molecular
system.17 The aim is to produce a charge distribution for the
QM fragment that is comparable to that of the entire molecule
treated quantum mechanically and a charge density for the
boundary atom analogous to the MM partial charge for that
atom. It turns out that the parametrization of the ECP for the
boundary atom is rather simple. The only parameter to be
changed is theUpp value in the original AM1 model, which is
reduced by a factor of 0.977 (Table 1). This scaling factor is
derived by producing a Mulliken charge of-0.18 e on the C2
boundary carbon in H3C(Q)-C(B)H2-CH3, a value used in the
CHARMM force field for this atom. Since the charge densities
for the three auxiliary orbitals are 1.06, 1.06, and 1.06 for the
C-H, C-H, and C-C bonds from eq 7, the Mulliken charge
on the boundary atom is entirely due to the “excess” bond
density from the auxiliary orbitals. The implication of this
charge distribution is that there is a balanced electronegativity
between the QM fragment and the boundary atom with minimal

Figure 2. Computed geometries for ethane at the HF/6-31G*, AM1
(in parentheses), CHARMM [square parentheses], and GHO<angular
parentheses> levels. Only the relevant AM1 or CHARMM values are
listed for comparison with the GHO results. The fragment to the left-
hand side of the boundary atom CB is the QM fragment. This convention
is used in all other figures.
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charge transfer in these two regions, as it should be, for the
hydrocarbon model systems. This is consistent with the results
of full QM calculations. Charge polarization will occur, of
course, for polar molecules, as demonstrated for acetic acid when
the carboxyl group is treated as a QM fragment and the methyl
carbon as a boundary atom (Table 3). In this case, the total
charge of the methyl group is computed to be 0.068 e using the
GHO method, which is slightly smaller than the AM1 value
(0.133 e). As depicted in Figure 5, the Mulliken charges for
the QM fragments in the hydrocarbon compounds are all in
reasonable accord with the full QM AM1 results.
Bersuker et al. described a double self-consistent (DSC)

procedure to allow charge transfer between the QM and MM
fragments.10b In this approach, a central QM fragment is first
selected, and its valency is saturated by the use of link atoms.
The geometries of the QM and MM fragments are optimized
separately. Then, an intermediate fragment adjacent to the
“border” atom from the MM fragment is separated for a second
QM-SCF calculation with link atoms to saturate its valency.
The density matrix elements for the border atom are adjusted
by the difference of the densities from the two calculations,
which are subsequently used in the next iteration of the SCF
calculation for the central QM fragment. In a test study of
picket-fence porphyrin, it is found that each phenyl substituent
loses 0.5-0.6 electrons to the iron porphyrin, with a total of
2-2.4 electrons transferred from the substituents.10b Although
this finding is surprising in view of the amount of charge
transfer, the method is complicated by problems of link atoms.6,8

In addition, it is not clear how the MM charges are treated and
adjusted as the QM fragment gains substantial electron density.
Finally, it is essential to be able to use the GHO method to

predict conformational energies for a hybrid QM/MM system.
For ethane and propane, the internal torsions only involve the
rotation of a methyl group. The barrier height for ethane is

predicted to be 2.94 kcal/mol using the GHO method, which
may be compared with the CHARMM value of 2.91 kcal/mol.
For propane, the methyl torsional barriers are 3.12 and 3.07
kcal/mol from the GHO and CHARMM calculations, respec-
tively. The torsional energy profile around the central C2-C3

bond of butane, which is shown in Figure 6, is particularly
interesting because of its relevance to large molecular systems.
For the two cases in which the link atom is located at the C2

(L2) and C3 (L3) position in butane, the QM fragment does not
contain the torsional terms around the C2-C3 bond. Thus, the
torsional energy has the largest contribution from MM terms,
and indeed, the agreement with the potential energy profile
predicted with CHARMM is good, in both the shape of the
profile and barrier heights. The only noticeable discrepancy is
the predicted energy for the gauche conformer, which is 0.54-
0.56 kcal/mol above the anti conformer in the GHO calculation.
This may be compared with a value of 0.88 kcal/mol from
CHARMM, 0.71 kcal/mol from AM1, and 0.60 kcal/mol at the
MP3/6-311G** level.20

When the boundary atom is placed at the terminal C4 (L4)
position, the torsional potential energy surface is largely
determined quantum mechanically by the GHO-AM1 method.
As a result, the torsional energy profile (long dashed line in
Figure 6) should be compared with the AM1 result. The
agreement between the two computations is also reasonable.
However, the AM1 model itself yields poor conformational
energies for most organic molecules including butane in
comparison with ab initio or experimental data. The barrier
heights are proportionally too small from the AM1 calculations
in comparison with high-level ab initio data. This is a
documented problem in semiempirical models.19 Thus, it is
desirable to extend the present approach to ab initio calculations.
Importantly, the present results demonstrate that the GHO
method is capable of reproducing the energies for the individual

Figure 3. Computed geometries for propane for the boundary atom at (a, top) the C2 position and (b, bottom) the C3 position. See caption of Figure
2 for details of the notation.
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QM and MM fragments as well as the QM-MM covalent bond
in comparison with the corresponding QM and MM data.

V. Conclusions

The interest in the development of the present GHO method
lies in the fact that the connection between the QM and MM
fragments can be adequately treated in a unified manner in
combined QM/MM calculations. In this method, the “frontier”
or boundary atom of the MM fragment is represented by an
effective core potential, with one hybrid orbital participating in

Figure 4. Computed geometries for butane corresponding to the boundary atom located at (a, top) the C2 position, (b, middle) the C3 position, and
(c, bottom) the C4 position. See caption of Figure 2 for details of the notation.

TABLE 2: Comparison of Optimized Bond Distances
between the QM and Boundary Carbon Atoms for a Series
of Organic Molecules Using the AM1 and Combined
GHO-AM1/CHARMM Potentials (Å)

moleculea AM1 GHO-AM1/CHARMM

H3CB-CH2NH2 1.522 1.517
H3CB-CH2OH 1.512 1.511
H3CB-COCH3 1.506 1.504
H3CB-CH2COOH 1.506 1.504
H3CB-CH2SH 1.500 1.502
H3CB-COOH 1.486 1.492
H3CB-C6H5 1.481 1.488

a The subscript B indicates that the methyl carbon is the boundary
link atom. The functional groups on the right-hand side of the specified
bond are the QM fragments.

TABLE 3: Atomic Charges Determined from AM1 and
GHO-AM1 Calculations along with Those Used in the
CHARMM Force Field for Acetic Acid (e)

atom CHARMM AM1 GHO-AM1/CHARMM

O(dC) -0.55 -0.361 -0.329
O(-C) -0.61 -0.321 -0.299
H(O) 0.44 0.243 0.249
C(dO) 0.75 0.306 0.311
H3C(boundary) -0.03 0.133 0.068
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explicit SCF calculations in the QM region.The GHO method
proVides a well-defined potential energy surface for a hybrid
QM/MM system, avoiding problems of bond collapsing in
geometry optimizations and arbitrary energy corrections using

the link-atom approach.8 Since the use of the auxiliary orbitals
on the boundary atom is recognized as a pseudopotential, the
atomic parameters in the GHO approach are general and
transferable. This is in contrast to the LSCF method, which
requires specific parametrization for each new system. The test
cases illustrated in this study indicate that the GHO method
can yield reasonable structural, energetic, and electronic results.
We anticipate that this method will help significantly the
application of combined QM/MM methods to biochemical
systems.
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